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SUMMARY: Problems involving fluid flow through a channel bound by porous surfaces are 
often encountered while modeling flow in liquid composite molding (LCM) processes. In order 
to conduct flow simulations inside a fiber preform unit-cell, proper boundary conditions need to 
be applied at the interface between the clear-fluid region and the fibrous porous medium. In this 
paper, we compare the three well-known interfacial boundary conditions: Beavers-Joseph’s slip-
velocity condition, Brinkman’s stress-continuity condition, and Whitaker’s stress-jump 
conditions. In order to estimate the accuracy of these boundary conditions, a model porous 
medium made of parallel impermeable cylinders with periodic distribution, is created next to an 
empty channel for simulation of 2D Stokes flow in the entire pore-space domain. The boundary 
element method (BEM) is used to solve the Stokes equations in such a domain. Volume 
averaging allows then recovering the macroscopic average velocities from the pointwise BEM 
solution. This ‘exact’ solution is then compared with the analytical solutions obtained for the 
three considered boundary conditions. Our results show that when the porosity is high, the stress-
jump condition leads to the most accurate flow prediction in the interface region. For the low or 
moderate porosities encountered in the typical LCM applications, none of the three considered 
conditions can predict the flow behavior at the interfacial region accurately, though they all result 
in a good estimation of the boundary-layer thickness and of the slip velocity. 
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INTRODUCTION 
 
For a steady-state creeping flow through a channel with an adjacent porous medium which is 
often encountered in liquid composite molding processing, the Stokes equation (Eqn. 1) and 
Darcy’s law (Eqn. 2) can be used to model the clear fluid region and the flow in the isotropic 
porous medium, respectively: 



02 =∇+∇− uμp  (1) 
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where u and ‹u› respectively represent the point-wise and volume-averaged velocities,  p and ‹p›f 
respectively represent the point-wise and pore-averaged pressures, K is the isotropic permeability 
of the porous medium, and μ is the fluid viscosity. Here we face the problem of defining the 
boundary conditions at the interface between the clear-fluid and porous-medium domains. 
Beavers and Joseph first proposed the slip velocity boundary condition at the interface [1] as: 
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where u is the tangential channel velocity beyond the interface for y > 0, u(0) is the tangential 
channel velocity at the interface, ‹u›D  is the tangential volume-averaged  velocity inside the 
porous medium given by Darcy’s law, K is the permeability, and α is the slip coefficient. Saffman 
[2] mathematically justified the slip condition and showed that the slip coefficient depends on the 
location of the interfacial boundary. Sahraoui and Kaviany [3] found that the slip coefficient 
depends on many factors such as porosity, Reynolds number, channel size, and interface location. 
If the Brinkman equation is used to model the porous-medium flow as: 
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where μ and μ′ represent respectively the fluid and effective viscosities, both the velocity and the 
shear stress are often assumed to be continuous at the interface. However, estimation of the 
effective viscosity μ′ remains problematic. Neale and Nader proved that if α = (μ′/μ)0.5, the 
Brinkman equation with continuity conditions yields the same solution as the Darcy’s law with 
the slip velocity condition [4]. Durlofsky and Brady [5] concluded that Brinkman equation is only 
valid for dilute system. Sahraoui and Kaviany [3] revealed that the Brinkman equation with a 
constant effective viscosity predicts correctly the slip velocity but generally does not result in a 
correct velocity profile in the porous medium near the interface. James and Davis [6] investigated 
the flow behavior at the interfacial region by analytically solving the Stokes flow in a 2D channel 
partially made of a periodical array of cylinders. Their numerical results showed that for μ′ / μ=1, 
the Brinkman equation over-predicts the velocity at the interface and the boundary penetration 
depth. Tachie et al. [7] validated experimentally the results of [6] using Particle Image 
Velocimetry (PIV) in a rotating cylinder apparatus.  
 
Unlike the above mentioned studies, which assumed stress continuity at the interface, Ochoa-
Tapia & Whitaker [8] developed a new interfacial boundary condition, using the rigorous volume 
averaging method while incorporating a stress-jump at the interface. Their results showed that the 
coefficient β in the stress-jump boundary condition remains of the order of one even for a large 
variation in the porous medium permeability, whereas the slip coefficient α based on the Beavers-
Joseph slip-velocity boundary condition changes over a larger range. Since the slip coefficient α 
can be related to the effective viscosity through α = (μ′/μ)0.5 [4], this means that the effective 
viscosity in the Brinkman equation incorporating the stress-continuity assumption changes over a 
larger range as well. Therefore, Ochoa-Tapia & Whitaker claimed that their interfacial boundary 
condition is a more precise representation of the flow physics at the interface.  



This brief literature review lists several options to model the flow at the clear-fluid porous-
medium interface. But the question remains as to which one of these models is really in best 
agreement with the actual microscopic flows occurring near such interfaces. The current work is 
an attempt to answer this question. We use the boundary element method (BEM) to solve the 
‘experimental’ 2D Stokes flow equations in a region, part of which is an open channel and part of 
which is a periodic porous medium made from a square array of fixed parallel cylinders. The 
volume averaging method is employed using the representative elementary volume (REV) to 
generate the averaged velocity profile from the point-wise BEM solution. The efficacy of the 
various interface flow models is evaluated by comparing their predictions with this BEM result. 
The effect of two different types of REVs, the fixed and variable types, on the average velocity 
profile is discussed as well. Additional details on the material presented in this condensed paper 
can be obtained from [9]. 
 
 

THEORY 
 

Solution of Brinkman Model Based on the Stress-Continuity Interfacial Condition 
 
The Stokes and Brinkman equations are used to model the steady-state creeping flow in the 
channel and porous medium, respectively. The interface between the channel and porous medium 
is located at y = 0. The width of the channel is taken to be h. If the velocity and stress are 
assumed to be continuous at the interface between the clear-fluid (channel) and porous-medium 
domains for the pressure-driven creeping flow, we can obtain the solution in terms of the velocity 
profiles in the clear-fluid and porous-medium domains as [4]: 
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where velocity at the interface ‹u›i is given by: 
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If a boundary-layer thickness δc can be defined as the width of the region inside the porous 
medium near the interface where
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is obtained from 
Dy

uu 01.1=
−= δ

[3]. We can find that the boundary-layer thickness is quite 

small and is of order K0.5. When Darcy’s law with the slip boundary condition is used instead of 
Brinkman equation with the stress-continuity condition, the velocity profile in the clear-fluid 
region is identical to (5), as long as α = (μ′/μ)0.5. The difference is that there is no boundary layer 
inside the porous medium with Darcy’s law, while a boundary-layer regime exists inside the 
porous medium with Brinkman equation. Thus the two approaches can be correlated. 
 
Solution of Brinkman Model Based on the Stress-Jump Interfacial Condition 
 
Ochoa-Tapia and Whitaker [8] proposed a governing equation for flow inside porous medium 
near the clear-fluid porous-medium interface as: 
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K
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where ε is the porosity of porous medium. When comparing Eqn. (9) and (4), it is obvious that (9) 
(the modified Brinkman equation) is identical to Brinkman equation (the original Brinkman 
equation) as long as μ′ = μ/ε. Ochoa-Tapia and Whitaker found that the average velocity is 
continuous at the interface while the stress may not be. Using rigorous volume averaging, they 
derived a complex mathematical expression to describe a stress jump at the clear-fluid porous 
medium interface. For 1D parallel flows, the stress-jump interfacial condition reduces to: 
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where β is a dimensionless coefficient on the order of one. Using the stress-jump boundary 
condition (10), the solutions to the Stokes and modified Brinkman equations (1), (9) can be 
expressed as: 
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where the velocity at the interface ‹u›i is given by: 
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Using the condition 
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, the thickness of boundary-layer in the porous-medium 

flow can be defined as: 
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It is clear that if β is zero (i.e, stress is continuous at the interface) and μ′ = μ/ε, equations (11)-
(14) are same as (5)-(8), that is the solution of the modified Brinkman equation using the stress-
jump condition reduces to that of the original Brinkman equation with the stress continuity 
condition. The above solutions to Brinkman equation are in terms of volume averaged quantities, 
i.e., the solutions are not on the micro (pointwise) scale, but on the macro (REV) scale (see [9] 
for more details  on these analytical results for the stress-continuity and stress-jump conditions). 
 
 

BOUNDARY ELEMENT METHOD (BEM) FOR STOKES FLOW 
 

In order to study the flow boundary conditions at the clear-fluid / porous medium interface, we 
place a 2D porous medium, made of a square arrays of cylinders of radii 10 μm each, adjacent to 
a clear-fluid region in form of a channel. The depth h of clear fluid region is 720 μm. The 
porosity ε of the porous medium region varies from 0.5 to 0.9 by changing the inter-cylinder 
space e. The boundary element method (BEM) is employed to solve the pointwise Stokes 
equation. The code is based on a direct formulation and parallelized with MPI (Message Passing 
Interface). No-slip boundary conditions are applied at the top and bottom walls y = h, -W and at 
the surfaces of cylinders. Since pressure-driven flow is considered, a pressure difference ∆p is 
applied on the two vertical boundaries. The pressure gradient ∆p/∆x is 1 Pa/m. The pointwise 
BEM solution is used as a benchmark to evaluate the Brinkman model with different boundary 
conditions in this study. More details on this BEM simulation are available elsewhere [9]. 
 
 

VOLUME AVERAGING METHOD 
 

The volume averaging method is employed to average the pointwise BEM solution of the Stokes 
equation in order to extract the macro-scale flow behavior. Since the flow is 1D on the macro-
scale, the rectangular Representative Elementary Volume (REV) used for averaging has the same 
length as the entire flow domain, while its depth l along the y direction is determined from the 
required porosity ε. When the REV is moved along the y direction during the averaging, the REV 
size is kept unchanged (method referred to as the fixed REV technique). Sahraoui and Kaviany [3] 
proposed another type of REV: if the y coordinate of the REV centroid lies between 0 and - l/2 
near the clear-fluid porous medium interface, the REV dimensions are taken as -2y by L; 
otherwise the REV size is still l by L. This type of position-dependent averaging procedure is 
referred as the varying REV technique, to distinguish it from the previous one. Both techniques 
were used to recover the volume-averaged velocity from the pointwise BEM solution.  

 
 

RESULTS AND DISCUSSION 
 

In order to determine the effective permeability of a region filled with an array of cylinders, flow 
in a rectangular domain fully filled with cylinders is separately simulated using the BEM. The 
permeability of this can be calculated from the average velocity through the domain and the 
corresponding pressure drop by using the Darcy’s law (2). The effective permeability obtained at 
different porosity levels is listed in Table 1. The numerical results of Sahraoui and Kaviany [3] 
show that the permeability for a square array of cylinders is given by: 
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where a is the radius of cylinder. Our results show [10] that the permeability estimated by the 
BEM agrees well with that calculated from (15). 

Table 1  Permeability of a square array of cylinders 

 ε= 0.5 ε= 0.6 ε= 0.7 ε= 0.8 ε= 0.9 
BEM(m2) 1.19E-12 3.52E-12 9.9E-12 3.01E-11 1.26E-10 

(Eqn. 15) (m2) 1.10E-12 3.49E-12 1.02E-11 3.03E-11 ─── 

Comparison of the Pointwise Solution with Brinkman model 
 
The effective viscosity μ′ must be determined in order to compare the Brinkman solution to the 
average velocity based on the point-wise solution. Similarly, the adjustable coefficient β in the 
stress jump condition needs to be determined as well. The parameter μ′ is decided by adjusting μ′ 
to match the total flow rate in the channel calculated from (6-7) with that from the BEM solution 
[9], which is equivalent to the experimental procedure which Beavers and Joseph used to 
calculate the slip coefficient [1]. The coefficient β in the stress jump condition is determined by 
the same approach as well. Values of μ′ / μ and β thus determined are listed in Table 2. If Darcy’s 
law with the slip-velocity boundary condition is used for the porous medium instead of the 
Brinkman model with the stress continuity condition, the slip coefficient α is related to μ′ by α = 
(μ′/μ)0.5. Values of the resulting slip coefficient α are listed in Table 2 as well. The trend of 
porosity dependence of the slip coefficient from our study agrees well with the one observed by 
Sahraoui and Kaviany [3], however our slip coefficient values are slightly smaller. This is caused 
by the inclusion of the inertial terms (Reynolds number Re ~ 1) in their simulation, and their 
results indicate that the slip coefficient increases with the Reynolds number for 0.1 ≤ Re ≤ 10. 

Table 2  Effective viscosity μ′ in (4), coefficient β in (10) and slip coefficient α in (3) 

 ε = 0.5 ε = 0.6 ε = 0.7 ε = 0.8 ε = 0.9 
μ′ / μ 1.2 1.7 3.2 6.3 14.4 
β 0.3 -0.1 -1.0 -1.8 -2.2 
α 1.1 1.3 1.8 2.5 3.8 

Fig. 1 shows streamlines for the pressure-driven channel flow over square arrays of circular 
cylinders; only flow details near the top two rows of cylinders are shown. The streamlines above 
the top row of cylinders are smooth, and the streamline spacing indicates a slight perturbation in 
the channel flow due to the presence of cylinders below. However below the center-line of the 
top row of cylinders, the streamlines appear very wavy, indicating a rapidly diminishing x-
direction velocity (as spacing increases downward) and a significant transverse velocity around 
the cylinders. In the second row of cylinders, the effect of the channel flow is almost negligible 
and the streamline pattern resembles that of the pressure-driven flow through an infinite square 
array of circular cylinders. In the low porosity (ε = 0.5) case, the outermost recirculation eddies 
resembles those in the inner row of cylinders, which indicates that the flow field decays very 
rapidly with a reduction in the porosity. 



 
(a) 

 
(b) 

Fig. 1  Streamlines for pressure-driven channel flow (a) ε = 0.90, (b) ε = 0.50. 
 

It has frequently been assumed that the effective viscosity μ′ is equal to the fluid viscosity μ. In 
order to estimate the accuracy of this simplifying approach, we compare its solution with the 
volume averaged results obtained by the BEM. Fig. 2a, b shows, for ε = 0.9 and 0.5, the 
comparison of the volume averaged velocity based on the pointwise BEM solution with the 
solution of the original Brinkman equation with the stress continuity condition for a suitable μ′ 
(listed in Table 2) or for μ′ = μ, and with the solution of the modified Brinkman equation with 
stress-jump condition. We find that when porosity ε is 0.9, solution of the modified Brinkman 
equation using the stress-jump condition, agrees well with the average velocity profiles based on 
the pointwise BEM solutions, especially the varying REV result. The slip velocity, the 
penetration depth of the boundary layer, and the velocity profile are well predicted through the 
use of the stress-jump condition [9]. With a decrease in the porosity, the modified Brinkman 
equation with the stress-jump condition progressively fails to predict the volume averaged 
velocity near the interface; however it still predicts the penetration depth and slip velocity 
accurately [9]. Fig. 2a, 2b also show that the original Brinkman equation with the stress-
continuity equation cannot accurately predict the velocity profiles at the interfacial region for the 
full range of ε. 
 
Fig. 2 also indicates that the original Brinkman equation with μ′ = μ and based on the stress 
continuity condition, severely over-estimates the slip velocity for high porosity porous media 
(note that the velocity is in log scale). The experiment by Tachie et al. [7] showed that the 
observed slip-velocity is merely 24-30% of the value predicted by the original Brinkman 
equation for μ′ = μ and ε ranging from 0.84 to 0.99. We also find that the velocity profiles 
predicted by the Brinkman models with the stress-continuity and stress-jump conditions get 
closer to each other for low porosity (ε < 0.7) conditions. Thus, we conclude that for a high 
porosity (ε > 0.8) medium, the modified Brinkman equation with the stress-jump condition 
predicts velocity at the interfacial region accurately, while the original Brinkman equation with 
the stress-continuity condition fails to do so. When the porosity is low (ε < 0.8), although the 
Brinkman models, with the stress-jump or with the stress-continuity boundary conditions, may 
correctly estimate the penetration depth and slip velocity, none of them can accurately predict the 
flow velocities at the interfacial region. Therefore, we can conclude that various Brinkman 
models are not valid for lower porosity (ε < 0.8) media as far as flow prediction in the interfacial 
region is concerned. But if only the penetration depth and slip velocity are of interest in such 
media, the original Brinkman equation with μ = μ′ can yield fairly good estimates. 



 
a) 

 
b) 

Fig. 2  Comparison of average velocity based on the pointwise BEM solution with the Brinkman 
models using different interfacial conditions: (a) ε = 0.9; (b): ε = 0.5. 

 
Average Velocity Profile of Pointwise Solution Affected by Volume Averaging 
 
In Fig. 2, the velocity profiles recovered using the varying and fixed REV techniques show 
considerate disparity in the interfacial region. We choose REVs with different depths l, 2l, 3l and 
4l (see [9] for details) in the averaging process to show the influence of REV size on the average 
velocity. The comparisons of the average velocity profiles for ε = 0.9 using the varying REV are 
plotted in Fig. 3. The averaged BEM results are compared with the modified Brinkman equation 
predictions as the latter was found earlier to be the most accurate for high porosity media. It is 
clear from Fig. 3 that the REV size does have an influence on the average velocity profile. Note 
that when the varying REV technique, the average velocity profiles in Fig. 3 have a very similar 
feature: the average velocity drops sharply to a low value, which is even lower than the Darcy 
velocity found farther away from the interface; the average velocity then rises to recover the 
Darcy value either in a steady monotonic or fluctuating manner. This increasingly fluctuating 
velocity helps to judge the correct penetration depth, while the immediate drop to the Darcy’s 
velocity witnessed in the larger REV velocity profile provides false information on the flow 
behavior at the interface. Therefore, too large a REV masks the increasingly fluctuating region 
and makes it difficult to discern the real penetration depth. The same conclusion can be drawn for 
the fixed REV technique [9]. Both the varying and fixed REV techniques show that an optimum 
REV width is required to reflect accurately the flow behavior at the interfacial region,: for high 
porosity, suitable REV depth lies between l to 3l; for low porosity, the suitable depth is l. Farther 
away from the interface, the velocity profiles based on different REV sizes are almost identical. 

CONCLUSIONS 
 

The boundary conditions at the interface between the clear-fluid / porous-medium regions have 
been studied in detail. The velocity profiles obtained from the original and modified Brinkman 
equations (using either the stress-continuity or stress-jump interfacial conditions) are compared 
with the volume averaged velocity based on the pointwise Stokes velocity obtained numerically 
by the boundary element method (BEM). Our results show that when the porosity is high, the 
modified Brinkman equation with the stress-jump boundary condition gives the most accurate 
flow prediction at the interfacial region. For low or moderate porosities, although the two 



Brinkman models with stress-continuity or stress-jump conditions do not predict the flow 
behavior accurately at the interfacial region, they all yield a good estimate of the boundary-layer 
thickness and slip velocity. So it is acceptable to use the fluid viscosity to obtain accurate 
boundary-layer thickness and interfacial velocity. The varying REV technique generates also a 
velocity profile at the interfacial region different from the one obtained by the fixed REV 
technique. The REV size has a significant influence on the average velocity profile: wider REVs 
lead to excess smoothing that in turn mask the interfacial effects on the velocity profile. 

 
Fig. 3  Comparison of velocity profiles averaged using different REV sizes. 
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